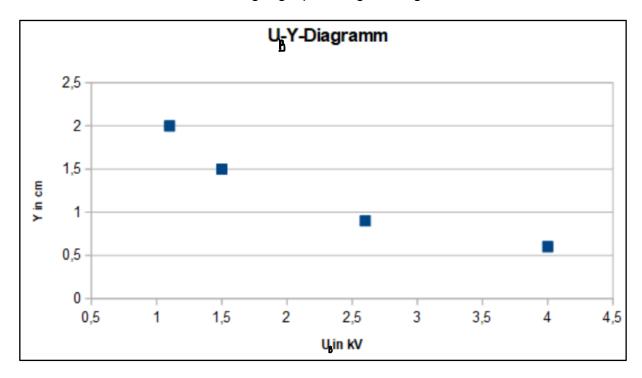

<u>Elektronenablenkröhre – Abhängigkeit zwischen Ablenkung der Elektronen von der Beschleunigungsspannung - Lösung</u>

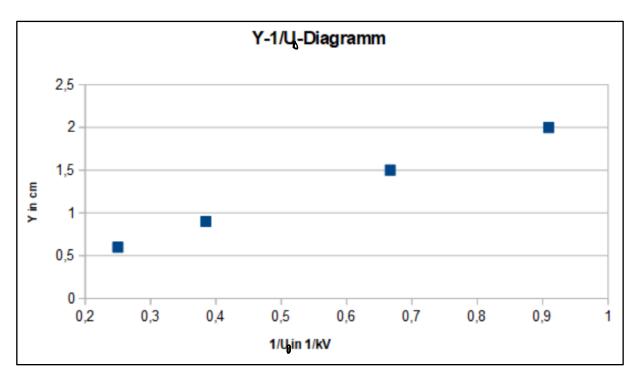
Aufbau

Durchführung

- 1. Man stellt die Ablenkspannung U_A an den Ablenkplatten konstant auf 1 kV.
- 2. Man schaltet die Heizspannung ein.
- **3.** Man verändert anschließende kontinuierlich die Beschleunigungsspannung U_B und liest die jeweilige Ablenkung der Elektronen auf der "Ablenkskala" ab.

Fragestellung:


Wie hängt die Ablenkung der Elektronen von der Beschleunigungsspannung U_B ab?


Messwerttabelle

U _B [in kV]	Ablenkung Y [in cm]	1/U _B [in 1/kV]	1/U _B / Y [in 1/kV/cm]
1,1	2	0,91	0,45
1,5	1,5	0,67	0,44
2,6	0,9	0,38	0,43
4	0,6	0,25	0,42

Auswertung

Nutzt die Messwerte für zwei Diagramme, die die Abhängigkeit der Ablenkung der Elektronen Y und der Beschleunigungsspannung U_B zeigen.

Ergebnis

Die Ablenkung Y der Elektronen hängt proportional von 1/U_B ab. Verdoppelt man die Beschleunigungsspannung U_B, so halbiert sich die Ablenkung Y.